
An Analysis of the Effectiveness of Blocks-based Programming Languages in
Classrooms

Maxwell Lancaster

mlancast@mit.edu

Introduction

Today’s technologies play roles in nearly everything we do. From shopping for clothing
or groceries, to social media and online banking, the field of Computer Science has trickled
into every aspect of our lives. As such, the need to be able to effectively communicate among
and contribute to this field will soon be essential to having a foundational understanding of
how our society functions. The method by which we do this communicating and the tool
that we use to make contributions to the field of Computer Science is known as computer
programming. Programming is a discipline that requires critical thinking, creativity and
a level of organization that is often not present in other disciplines. For this reason, it
serves as an excellent complement to the traditional foundational subjects taught in early
education: math, reading, and writing. There is general value associated with the ability to
think like a programmer does. Programmers are exceptionally good at breaking problems
down into their essential components, and solving each of these components individually. A
basic, working, programming knowledge will soon be an essential piece to the larger puzzle
of intelligence.

According to the U.S. Bureau of Labor Statistics, there were 913,000 computer program-
mer jobs in 2010. That number is expected to grow by 30% by 2020 [1]. The U.S. will not
produce enough programmers to fill these jobs. Because of this, programmers are in high
demand. So how do we inspire students to pursue a career in computer science? This has
been the goal of a new style of programming languages - known as blocks-based program-
ming languages - which are geared to provide easy on ramps to the programming world.
Blocks-based programming languages are typically graphical environments that allow users
to create programs with only their mouse by dragging and dropping blocks which correspond
to an instruction or a set of instructions. These blocks usually snap together to indicate
that the user is putting together a cohesive program. Figure 1 depicts two examples of
blocks-based programming languages.

The evidence presented here seeks to argue that programming is an essential component
of any child’s early education, right alongside mathematics and reading/writing. In addition,

1



this work argues that blocks-based programming tools facilitate a faster and easier introduc-
tion to the field of computer science in middle-school aged students than their text-based
counterparts. Lastly, educators are better equipped to engage and inspire their students to
pursue careers in computer science when using blocks-based programming tools.

Figure 1: Two examples of blocks-based programming languages. (Left) Gameblox, (right) MIT Scratch.

1. Improvements on Traditional Programming Education

Lead by popular tools such as MIT Scratch [2], Google Blockly [3], and Android App
Inventor [4], blocks-based programming languages have propelled themselves into today’s
classrooms featuring syntax-free program construction, visual, real-time, constructive feed-
back, user empowerment, and inherent teachings about abstraction.

1.1. User Experience

Most blocks-based programming tools utilize several different affordances to help users
construct programs. Typically, blocks are organized by color to indicate function. A block’s
shape indicates which other blocks it may be appropriate to use with. Similar to traditional
programming indentation, blocks can be nested to denote the scope of the instruction.
More importantly, most blocks-based programming tools impose certain constraints on the
construction of programs to encourage users to create syntactically correct programs. If
two blocks cannot be joined to create a syntactically correct instruction, then the system
does not allow them to be attached. In effect, this only allows users to create syntactically
correct programs and eliminates all syntax-related, debugging headaches that are all-too-
common for software developers. Further, this encourages experimentation from the user
by allowing them to repeatedly select and try to join different blocks. It is precisely this
experimentation that allows a beginner-level programmer to easily and fearlessly create
unique programs that they would otherwise not be able to create (at least, certainly not

Preprint submitted to MIT 21W.031 April 6, 2016



as quickly) in a traditional text-based programming language. Lastly, though the user may
not create a syntactically incorrect program, he or she must still select each and every block
in the program, effectively preserving the traditional instruction-by-instruction program
construction used in all programing languages. Fred Martin from the Computer Science
Teachers Association argues that the single largest benefit of blocks-based programming
languages is their ability to encourage quick and syntax-free program construction, while
maintaining the genuine intellectual challenge of programming [5].

1.2. User Empowerment

In general, blocks-based programming tools allow users to reach the end-goal, or finished
version of their program, much quicker than traditional text-based programming. This is
in large part, due to the aforementioned syntax-free construction which eliminates poten-
tially pain-staking debugging. In addition, most blocks-based programming tools provide
immediate access to powerful APIs such as Gameblox’s physics-enabled sprite movements,
and App Inventor’s message sending or web database querying. These tools are more read-
ily accessible in blocks-based programming tools like Gameblox and App Inventor because
the creators have pre-packaged these functionalities into the respective toolkits. In essence,
users of these blocks-based programming tools have, at their fingertips, the tools to make
powerful programs that do real things. However, creating a program that achieves similar
results in a text-based programming language from the ground up often requires many lines
of code that can be far beyond the beginner scope [5].

Further, many of these tools, such as Gameblox, Scratch, and App Inventor, encourage
the sharing of work between users. Scratch and Gameblox feature gallery-like pages where a
user can run and edit another users’ programs. Similarly, much of the professional software
engineering community is built around open-source projects. By encouraging a user to share
their work, and view other peoples’ work, these programming tools are empowering users to
take pride in the programs they build, and to learn from the work of others - two important
concepts in the field of computer science that are best learned early on.

1.3. Inherent Abstraction

One of the most important topics in the field of computer science is known as abstraction.
Abstraction is the single most effective solution to complexity [6] because it allows a system
or program to be broken down into its most essential components. Each of these components
is responsible for taking a certain input and producing a certain output. That’s all.

For example, a car is an excellent showcase of abstraction that many people interface
with on a daily basis. When a driver steps on the gas pedal, the throttle valve opens and
more fuel enters the engine. The driver does not need to manually inject fuel into the engine;
instead, he simply steps on the gas pedal and relies on the corresponding components to
perform their jobs. In addition, when the driver turns the steering wheel, this effort is passed
through a system of joints down to the wheels. Each of these joints (components) execute
their function and rely on the next one to do the same. In the end, the steering system
is rather simple and very well engineered because each component is highly effective at
performing a simple task. This is the beauty of abstraction: the driver need not understand

3



how the fuel is injected into the engine, or how the steering box connects to the drop arm
to drive a car correctly. The system works because each of its components performs its job
correctly.

Blocks-based programming tools inherently teach students about abstraction. The blocks
that a student uses in building his or her program often represent multiple lines of code and
multiple different function calls. For illustrative purposes, Figure 2 shows the code that
underlies a single block related to setting a sprite’s speed. Notice that this one block which
sets a sprite’s horizontal speed to a value of 100 actually corresponds to 10+ lines of code,
including reference to several other functions. In a text-based programming language, a user
would have to write all of this code to achieve his or her goal of setting a sprite’s speed. In
Gameblox, the user simply needs to grab this one block. By abstracting away the specific
implementation, Gameblox allows the user to get to the solution as quickly as possible. This
allows the user to focus on developing a creative, unique solution to a problem, instead of
focusing on specific syntax details.

Figure 2: The underlying code for a speed block in Gameblox.

In another sense, by breaking the large problem down into its essential components,
and then solving each of those components individually, abstraction often contributes to
the elegance and organization of a particular solution. In the same way that middle-school
students are taught to organize their thoughts in the most understandable and logical way
when writing an essay, blocks-based programming tools inherently teach students about
composing their programs in the most logical and easy-to-follow way.

2. Gameblox

At the time of writing this (2016, April), I have spent the past two years working in
the MIT Scheller Teacher Education Program Lab (the Education Arcade). The STEP

4



Lab builds games that help educators improve classroom learning environments, and help
students build math and science skills. In particular, the project that I have worked on is
called Gameblox (mentioned throughout in the preceding sections) a blocks-based program-
ming tool designed specifically for making and playing games [11]. Gameblox is a unique
blocks-based programming tool for numerous reasons:

1. it teaches students about Object Oriented Programming

2. it will soon implement the above-mentioned blocks-to-text conversions

3. it is strictly designed to create games, instead of all purpose programs such as those
created in MIT Scratch or App Inventor

Regarding (1), Gameblox is set up with difference classes, such as “Sprites”, “Labels”,
“Sounds”, etc., which can be thought of as types of objects. Then, the user can create
instances of these different classes by simply dragging them onto the editing stage [12]. In
using this system, users learn about Object Oriented Programming topics such as inheri-
tance. For example, the user has the ability to set various properties of a Sprite Class in a
sidebar on the left side of the interface. The user quickly learns that these properties apply
to each all instances of that class. So, each instance of the Alien Class that the user drags
into his or her game, inherits the properties that he or she set for the entire Alien Class.
In addition, the individual instances of the Alien Class (now located in the editing stage)
can have instance-specific properties such as their x- and y-positioning, height, and width.
These concepts are very similar to the true Object Oriented Programming Concepts that
are taught in, say, an introductory Java course.

Gameblox and TAIL (Textual App Inventor Language) in particular are developing tools
to allow users to convert between blocks and text programs. Both of these languages will
feature isomorphic text-based languages that allow programmers to convert between blocks
and text as desired [9]. In addition, these languages will allow users to make edits to the
program in text-form, and convert back to blocks [10]. This last feature facilitates more
syntax-based learning, and will appeal to many users who are turned off by blocks-based
languages in fear that they are not “real” programming languages [5].

In the same sense that different text-based programming languages have different syn-
taxes and different constructs, so do blocks-based programming languages. Some critics
argue that the constructs used in blocks-based programming languages are overly simpli-
fied, and simply delay the need to learn language-specific syntax [13]. For example, Figure
3 depicts a “forever” block, found in the Google Blockly library and used in Gameblox. It
is true that most programming languages do not have a simple statement or construct that
loops through a set of instructions forever, as this block does. However, most programs
written for games (as is every project made in Gameblox), make use of a function called
“update” which simply runs the game logic once for each frame of the game’s execution.
This is not unlike the “forever” block used in Gameblox, so there is clearly value in this kind
of programming construct in blocks-based programming languages.

5



Figure 3: The Google Blockly “forever” block which constants runs the stack of blocks inside of it.

3. Conclusion

We live in a world where the demand for instantaneous results has become the expectation
in almost every facet of our lives. We have smartphone apps which, in addition to providing
instantaneous access to the deepest corners of the Internet at our fingertips, have eliminated
the wait for tasks such as finding a cab, choosing a restaurant, or even finding a date.
By virtue of the shiny new technologies that get rolled out each week and the frequent
improvements on computational power and efficiency, humans have become, by nature, less
patient. These statements will be even more true for the next generation of students who
come through our classrooms. For this reason, it has become increasingly easy for students
to lose interest in science, technology, and engineering-related fields [14].

As mentioned above, the number of jobs related to computer science (and most other
science/engineering related fields) is expected to surge in the coming years, but the interest
levels in our classrooms across the country will not match that surge. The role of blocks-
based programming tools is in mitigating this problem. Whether or not you buy into the
idea that blocks-based programming tools are more effective at teaching introductory pro-
gramming skills than their text-based counterparts, research has shown that, in one study,
up to 92% of students surveyed cite blocks-based programming as easier to use [13] than
text-based programming. Computer programming can be an intimidating concept for many
young students [15]. At the very least, blocks-based languages are effective at breaking down
that fear by improving ease-of-use.

Tools like Gameblox, and TAIL are leading the force behind block-to-text conversion
capabilities, and I imagine this will be the next wave of major changes to the blocks-based
programming world. Research has been conducted that shows that there is often difficulty in
transitioning from graphical blocks-based programming to traditional text-based program-
ming [13]. Thus, in working towards the perfect solution - the one which is effective at both
inspiring students to pursue careers/education in computer science and most effective at
teaching students about how to think like a computer scientist - blocks-based programming
tools will most likely need to follow the lead of Gameblox and TAIL.

Computer Programming will soon be recognized as one of the core subjects taught in
early-education classrooms. As a result, schools that do not respond to this trend by in-
tegrating the newest tools to teach computational thinking will be left behind in the 20th
century.

6



References

[1] U.S. Bureau of Labor Statistics, 2015. Software Developers.

[2] Resnick, M. et al. 2009. Scratch: Programming for all. Communications of the ACM.

[3] Fraser, N. 2013. Blockly. Google.

[4] Abelson, H and Frienman, M. 2010. App Inventor. MIT Media Lab.

[5] Martin, F. 2014. Real Programmers Use Blocks - A new definition of who is a programmer. URL:
http://blog.csta.acm.org/2014/10/28/real–programmers–use–blocks–a–new–definition–of–who–is–a–
programmer/. Accessed April 4, 2016.

[6] Abstraction. Cornell University. CS211 L08 Abstraction.

[7] Karishma, C. 2014. Improving the Usability of App Inventor through Conversion between Blocks and
Text. Wellesley University

[8] Karishma, C. and Turbak, F. 2014. Improving App Inventor usability via conversion between blocks and
text. Journal of Visual Languages Computing. Volume 25. December 2014, Pages 1042-1043.

[9] Medlock-Walton, P. 2016. Gameblox MIT Scheller Teacher Education Program Lab. URL:
http://education.mit.edu/portfolio page/gameblox/. Accessed April 3, 2016.

[10] Medlock-Walton, P. 2016. Gameblox. URL: https://gameblox.org/. Accessed April 4, 2016.

[11] Weintrop, D. 2015. IGCSE : G : Minding the gap between blocks-based and textbased programming:
Evaluating introductory programming tools. Association for Computing Machinery.

[12] Langfield, A. 2013. Teens losing interest in science, tech money jobs. Yahoo! Finance. URL:
http://finance.yahoo.com/news/teens–losing–interest–science–tech–100000227.html. Accessed April 4,
2016.

[13] Holden, E and Weeden, E. 2005. Prior Experience and New IT Students. Informing Science. Pages 188
– 204.

7


